PHYSICAL REVIEW E VOLUME 56, NUMBER 1 JULY 1997

Energy injection in closed turbulent flows:
Stirring through boundary layers versus inertial stirring

O. Cadot, Y. Couder, A. Daerr, S. Douady, and A. Tsinober
Laboratoire Physique Statistique, Ecole Normale Sigpee, 24 rue Lhomond, 75231 Paris, France
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The mean rates of energy injection and energy dissipation in steady regimes of turbulence are measured in
two types of flow confined in closed cells. The first flow is generated by counterrotating stirrers and the second
is a Couette-Taylor flow. In these two experiments the solid surfaces that set the fluid into motion are at first
smooth, so that everywhere the velocity of the stirrers is locally parallel to its surface. In all such cases the
mean rate of energy dissipation does not satisfy the scaling expected from Kolmogorov theory. When blades
perpendicular to the motion are added to the stirring surfaces the Kolmogorov scaling is observed in all the
large range of Reynolds numbers £40Re<10P) investigated. However, with either smooth or rough stirring
the measurements of the pressure fluctuations exhibit no Reynolds number dependence. This demonstrates that,
though the smooth stirrers are less efficient in setting the fluid into motion, their efficiency is independent of
the Reynolds number so that the Kolmogorov scaling characterizes, in all cases, the dissipation in the bulk of
the fluid. The difference in the global behaviors corresponds to a different balance between the role of the
different regions of the flow. With smooth stirrers the dissipation in the bulk is weaker than the Reynolds-
number-dependent dissipation in the boundary layers. With réaginertia) stirrers the dissipation in the
bulk dominates, hence the Kolmogorovian global behayi®t063-651X97)11606-3

PACS numbds): 47.27.Gs, 47.27.Nz, 47.27.Jv

[. INTRODUCTION the rate of injection of energy, in the turbulence and the
rate of energy dissipatiomp (or equivalently betweerB,
Kolmogorov[1] was the first to emphasize in a quantita- and 8p).

tive manner the importance of the rate of dissipation of en-  Since then it has been widebelievedthat scaling(1) is
ergy ep per unit mass in turbulent flows. In his first paper valid for large enough Reynolds numbers as well as in a
devoted to turbulence, he assumed a scale invariance Ofrﬁ.uch broader context inc]uding a great Variety of inhomoge_
particular kind(Eqgs. 15 and 16 in Ref.1] in conjunction  neous flows, in fact for any flow for sufficiently large Rey-
with similarity hypotheses and drew the consequence tha{|ds number. However, as pointed out by Saffri2l the
ep has to scale as direct evidence for Eq(1) is still rather weak. Most of the

L2 U3 existing data, such as reported by Batch¢Rjr Sreenivasan
&0~ 3 or equivalently aST , (1) [4], and Lumley[5], were obtained for turbulent flows de-

caying in time, i.e., without sustained turbulence production

whereL, T, andU are the characteristic length, time, and e.g., 9”‘?' and Je_t turbglen¢e , )
velocity of any scale in the inertial subrange. Kolmogorov ~EXPeriments in which a steady regime of turbulence is
defined and applied his concepts “for sufficiently small do-Produced in a closed cell should in principle lend themselves
mains in the four-dimensional space;( x,, X, t) notlying 0 measurements of the global balance of energy. In contrast

near the boundary or its other singularities.” to the case of decaying turbulence in these systems, the mean
In the following we will use a nondimensional rate of energy dissipation has to balance the mean energy injection,
energy dissipation, and both can often be measured independently. On the other
hand, it is nota priori evident that Kolmogorov theory can
L apply here because of the presence of the containing walls
Po=ep 3 @ and thus of boundary layers.

Closed systems were mostly investigated in two cases: the
whereU andL will be associated with the large scale motion thermally induced turbulence obtained in Rayleighh&el
of the turbulent flow. If relatior(1) is valid, 8p should be a cells and the turbulent Couette-Taylor flow. The Kolomog-
constant independent of the Reynolds number. Kolmogorowrov scaling for the global injected energy was observed in
also assumed turbulence to be locally isotrdpicspacg¢ and  neither of these cases. Limiting ourselves here to mechani-
locally stationary(in time), the latter meaning the equality of cally stirred fluids, we can recall the main results obtained in
the Couette-Taylor flow in the experiments due to Wdndit
Tong et al. [7], and Lathrop, Finenberg, and Swinnggj.
*Present address: Laboratoire déddeique et d’Enerdgiue du ~ These papers gave results of measurements of the Reynolds

Havre, Le Havre, France. number dependence of the torque applied to the rotating cyl-
"Permanent address: Department of Fluid Mechanics, Faculty ahder. All the reported results are clearly different from what
Engineering, Tel Aviv University, Tel Aviv 69978, Israel. would be expected from Kolmogorov theory. The total input
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power P, being known from the torque, it is possible to +0
deduce from it an average nondimensional rate of energy
injection B, by

P, L
p being the density of the fluid and the volume of the cell. N
The results reported by Wend] and Tonget al.[7] exhibit \gé/
a power-law dependence for the torque which, set in relation
(3), yields thatg, is proportional to Re%2 [6] or Re °2[7] (e o (O~
a result clearly different from that expected from Kolmog-
orov scaling. Marcus and co-workel8,10| adapted to the
Couette-Taylor experiment a type of calculation first done by
Malkus and Veronig11] in the Rayleigh-Beard case. This
calculation takes into account the presence of walls by inves- £ 1. Schemes of the two variants of experiment (Al
tigating the coexistence of two stable boundary layers with &mooth stirrers: the two stirrers are disks with a cylindrical .
bulk inviscid flow. Using a marginal stability analysis for the Rough or inertial stirrers: inside the rim, six blades are placed per-
boundary layers, this approach yields a power-law depenpendicular to the disk surfaces and thus perpendicular to the rota-
dence forP|(Re) of the type found in the experiments. Lath- tion velocity.
rop, Finenberg, and Swinndy], performing very precise
measurements of the torque, refined these results. Their daf, a cylindrical tank with two coaxial contrarotating stirrers
obtained in a large range of values of Reynolds numberat the top and the bottom of the tank. Details can be found in
demonstrate that the Re dependence of the torque is notRef. [14].
simple power law. Instead they found local exponents con- The cell is a cylinder of radiu®, with two stirrers of
tinuously evolving with increasing Reynolds numbers. TheyradiusR=0.9R, at each end. The space separating the stir-
interpreted this result using the Prandtl-vonridan model  rers has a height equal toR (see Fig. 1 We used two
of boundary layers. Finally, from a theoretical point of view, €xperimental cells differing in size by approximately a factor
Doering and Constantifil2] examined the energy dissipa- Of 2. In the smaller on&®,=8 cm, so that its volume ¥
tion in a shear-driven turbulence confined between parallet 3 dn?. In the larger oneR,=15 cm and the volume is
walls, and found an upper bound for the global dissipationV=22 dn?. The two stirrers were rotated in opposite direc-
This upper bound has a scaling corresponding to that preions at a frequency)/2m ranging from 1 to 6 Hz. It has
dicted by Kolmogorov. been shown experimentally that this system is maximally
The problem addressed here is thus whether or not it igfficient in forcing turbulence when the stirrers are counter-
possible to obtain experimentally the theoretical Kolmo-rotating with equal angular velocities. In this geometry the
gorov scaling for the total-energy injection and dissipation inmain flow consists of two superposed tori which rotate rela-
a sustained turbulent flow in a closed cell. We will investi- tively to each other so that they define a shear layer between
gate this global energy problem in closed cells for two dif-them. Since these two circulations fill the whole cell, the
ferent experiments. The first is the flow between counter rotypical large length scale of the main flow is the radius of the
tating stirrer§ 13,14 The second is a Couette-Taylor flow. cell L~R and the velocity scale is given by the peripheral
In both types of experiment the fluid is set into motion by velocity of the diskdJ ~€QR. It is thus natural to define the
moving solid surfaces. Two variants of each experiment willReynolds number of this flow as R&R%/v.
be examined in which these surfaces will be either smooth or Our main goal here is to check the scaling of the global
equipped with platelets perpendicular to the motion. rate of turbulent energy dissipation in a wide range of Rey-
These experimental systems being examples of sustaingwlds numbers. We thus used the possibility of tuning the
turbulent flows, we will check the balance between energyotation velocities and used two fluids: watery (
input and dissipation. This last aspect is addressed via inde=0.01 cnf/s andp=1 g/cn?) or a glycerol solution(di-
pendent measurement of the total energy ifpuand of the luted with 20% water so thatv=0.62 cnf/s and p
global energy dissipatiof, which will be measured, in =1.2 g/cnd). Five ranges of Reynolds number were thus
each experiment, as a function of the Reynolds number. investigated: 18<Re<2.5x10%, 5x10°<Re<2.5x10%,
Finally, in each case measurements of the pressure flu6x 10°<Re<9x10*, 1.5x10°<Re<3x10°, and 6x10°
tuations will yield the intensity of the velocity fluctuations in <Re<2x10°. We complemented these results with mea-
the bulk of the flow(i.e., far from the boundari¢sAn inde-  surements of input power done by Zocddtial. [15] in a
pendent estimate of the dissipation, in this region only, willsimilar experiment using helium gas at low temperature as

-Q

be deduced from these measurements. the working fluid, and where Reynolds numbers as high as
Re~3Xx 1P were reached.
Il EXPERIMENT A The aim here was to investigate the effect of the geometry

of the stirrers. In the first set of experiments the stirrers were

The first experimental system uses a geometry introducedisks of radiusR with a cylindrical rim of height 0.R [Fig.
for turbulent studies by Douady, Couder, and Bradi&i, 1(a@)]. In the second set of experiments radial blades were
and widely used sincgl4—16. This system(Fig. 1) consists  fixed perpendicular to the plane of the disks and ra-
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dially, so that they would be normal to the stirring velocity 1+

[Fig. 1(b)]. Two types of blades were used. In the first case i o © 0000l
there were six radial blades of height OR25In the second B I e B Oga-__ff °%
there were ten small ribs of height 0R%nly. %o °%

In the absence of blades the velocity of the stirrers is 0.1 7=~=Z— {r KRR )b

locally everywhere parallel to their surfaces; for simplicity | -

we will call these stirrers smooth. In the latter cases the I 4~

blades are perpendicular to the motion and for simplicity we ‘\lm

will call these stirrers rouglfor inertial) stirrers. 0.01 i S~
The energy inpuP, was obtained through the measure- '

ments of the total power consumed by the motors driving the

disks (from which the power necessary to drive the empty 0.001 U g P ey
system was subtractedwith the orders of magnitude used g
for the definition of the Reynolds numbel =R and
U=0QR) and for the volumé/=R3, we define from Eq(3)
the expression foB, as a function ofP, by 0.0001
1000 10000 100000 1000000 10000000
_L (4) Re
B T H0%RE

As for the alobal dissipati it btained vi FIG. 2. Experiment A: Logarithmic plots of the nondimensional
S for the giobal energy dissipation, It was oblain€a via, .o energy injectioB, and dissipation@y andBg as a function

measurements _Of _the rate of increase of the mean tempergf the Reynolds number for the three variants of the experiment.
ture ¢ of the fluid in the system. In order to minimize the gy, symbols: results obtained with smooth stirrers. Trianghes
losses, the experimental cells were thermally insulated. T@ate of energy dissipatiof, ; circles (@), rate of energy injection
avoid a drift of the viscosity of the water-glycerol mixtures B, diamonds( ), estimate of the rate of energs dissipated in
each experiment was started with the fluid at a fixed temperane bulk of the fluid as estimated from the pressure fluctuations. The
ture 6, close to the room temperature. Then a measurememfashed line shows a power law dependence proportional to
of 6(t) with a temperature probe having a resolutionAsf  Re ¥ Open symbols: results obtained with the very rough
=0.01° was done at constant time intervals, and the dissinertial) stirrers. Triangles(4), rate of energy dissipatiop ;
pated power was obtained by circles (O), rate of energy injectiorB,; diamonds(<), rate of
energy dissipatioBg . Results are obtained with the stirrers having
deo smaller platelets.X is the mean rate of the energy dissipation

whereC is the heat capacity of the system. Again, from these ., L u® oy 8
measurements and E(B), the nondimensionalized average Be=e U U OcR® ®)
rate of dissipatiornB, can be deduced by

Pp Results
Bo=—53R5" (6) .
P The results are expressed in terms of the Reynolds num-

. o . . . _ ber dependence. The dissipation coefficigBgsand By can
Finally it will be interesting to obtain an estimate of the pe directly compared in absolute values, as they used the
intensity of the velocity fluctuations in the bulk of the fluid, same definition. But there may remain a constant of propor-
far from the boundaries. It was shown in REf4] that the tionality in the comparison oBg with 3, or Bp . Figure 2 is
standard deviation of the histograms of the pressure fluctug piot of B, By, and 8. The comparison betwees, and
tions was proportional to the square of the forcing velocity g shows that the energy production and dissipation are in
but was otherwise independent of the Reynolds number. Thigood agreement with each other. In all cageih and with-
means that this standard d_eV|at|on can be considered asogt blade}the value of energy input is systematically about
measure of the rms fluctuating veIOC|_ty of the flow. We thusp504 |arger than energy dissipation. This is simply due to the
used pressure transducers as previously desciibéfto  fact that in this experiment the heat capacity of the system
measure such histograms and define a typical velocity flucyas considered to be that of the fluid. As a result, the heating

tuationU’ as of the stirrers and container being neglected, the energy dis-
sipation was slightly underestimated. The Reynolds number
U'=V(2Apms/p)- (7)  dependences @, andgp exhibit a sharp contrast in the two
cases of smooth and rough forcing.
From the values ofJ’ found with relation(7), and fol- (i) With smooth disks8, and Bp are found to decrease

lowing the Kolmogorov argumenEg. (1)], it is possible to  with increasing Reynolds numbéFfig. 2, black symbols In
estimate the rate of dissipation in the bulk of the flawi:  the middle range of Reynolds number they can be approxi-
=U’'3/L. so we can deduce a corresponding nondimensionahately fitted by a power law dependence R& as shown in
rate of dissipatiorBg for the bulk: Fig. 2. This does not necessarily mean that this power law
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1 with smooth stirrers the turbulence in the bulk of the fluid,
though weaker than with rough ones, has a constant ampli-
tude. In other terms, smooth or rough, the efficiency of a
given type of stirrer to set the bulk of the fluid in motion is
independent of the Reynolds number.

Now it is possible to use8g [Eg. (8)] to estimate the
01 F======+ W — g A gy ———— balance between the energy dissipation in the boundary lay-
ers and that in the bulk of the fluid. The valuesgy found
with rough stirrers are shown by open diamonds in Fig. 2.
They are only very slightly smaller than those gf and
Bp . If, as is likely, the dissipation in the bulk accounts for
most of the total dissipation, this shows that the prefactor

UYQR |~ ———————-- PSS

0,01 \—— ] necessary foBg to represent the dissipation in the bulk is of
1000 10000 100000 1000000 10000000 the order of unity. This is also an indirect justification of Eq.
Re (8), i.e., the use of the pressure fluctuations to estimate the

rate of energy transfer directly. This is a useful result, and it
FIG. 3. Plot of the typical velocity)’ in the bulk of the flow as ~ Will be used in a forthcoming pap¢23] devoted to the in-
deduced from the histograms of the pressure fluctuafises Eq.  Vestigation of drag reducing solution.
(7)]. The black triangleSA) are the data obtained with smooth ~ With this justification, we compute@g for the smooth
stirrers, and the open oné4) correspond to the data obtained with stirrers(see Fig. 2 As we found the velocity to be propor-
the rough ones. tional to QOR, the correspondingdz was constant as in the
case of rough stirrers. In the bulk of the fluid the turbulence

would provide a good fit, had the explored range of Reynoldds thus of the same nature as what would have been obtained
number been larger or the measurements more precise. In tMath rough stirrers, and the dissipation in the bulk of the flow
Taylor-Couette flow(Lathrop, Finenberg, and Swinn¢g]) fo]lows the_KoImogqrov argument. But, in contrast to rough
or in wakes(Schlichting[17]) similar local power-law fits ~ Stirrers,Bg is seen(Fig. 2) to be much weaker than the total
were obtained, but an exploration of a larger range of Reydissipation. The_ dissipation in the bulk thus only accounts
nolds number revealed that continuously varying values ofor a small fraction of the total. _ o
the exponents were needed in the different ranges of Re. This The turbulence created by smooth stirrers being inhomo-
behavior could well exist here also. geneous with boundary layers and a bulk central region, the
(i) When the disks are equipped with blades, the inpuf€sults of F_ig. 2 show that_ the dissipation in the boundar_y
power necessary to rotate the stirrers at a given velocity bdayers dominates and that it is only the decrease of the dis-
comes much larger and the dissipated power increases coyipation coefficient in the boundary layer which is observed.
respondingly(Fig. 2, open symbo)s But there is also a The extrapolation of the two curves suggests that at very
qualitative difference: over a range of Reynolds number exlarge Reynolds number the bulk dissipation would become
ceeding three orders of magnitug®, and 8 are now con- dominant, so that the d|s:.s|.pat|on coefficient would cease to
stant, meaning that relatigi) is satisfied. The Kolmogorov decrease, and would stabilize at a constant value equal to the
scaling is thus obtained globally. Additional results obtaineddissipation in the bulk. If the decrease of the boundary dis-
with smaller blades show that these, though less efficient t§iPation is approximated by a power law RE, this stabili-
set the fluid into motion, are sufficient to majé and 8, ~ Zation would occur for Reynolds numbers larger than
become constant in the range of large Reynolds numbes®®~1C. If the decrease ofg, is in fact logarithmic, as
(Fig. 2). suggested by the comparison with open flows and with the
These findings raise the question of whether or not th€ouette-Taylor case, the stabilization would occur for even
nature of the bulk of the turbulent flow is different with the larger values of Re.
two types of stirrings. An easy interpretation of the decrease
of B, and Bp could have been that the efficiency of the Ill. EXPERIMENT B
smooth stirrers to set the fluid into motion decreases with The previous results obtained with smooth stirrers are
increasing Reynolds number. The integral velocity of the . . :
flow U divided by the estimated large scale veloci®R similar to those of Ref8] in a Coue_tte-T_aonr_ ﬂ.OW' It was
would then be a decreasing function of the Reynolds num'ghus_natu_ral to check whether an m_ertlal stirring could be
ber. This hypothesis can be tested using the standard devi(f?lt-:’té“ne‘j in this geometry too. Experiment B was thus done

tion of the pressure fluctuations and the resulting estimate cip a classical Couette-Taylor cell shown in Figan The
the velocity fluctuations in the bulk given by E(). ength of both cylinders wah=230 mm. The radii of the

We measured these standard deviations for the first twg" " and |rlner cylinders containing the ﬂwq beimg_lzo
types of stirrings(smooth and very roughas a function of mr_n an_d a=7>5 mm, respectlvgly, the radius rath was
the Reynolds number. The results are given in Fig. 3. Th —a/b—0.625. As in theexpgrlment by Lathrop, Finen-
values ofU’ found for the turbulence created by the rough erg, and Swinneyg], only the inner cylinder rotated. The
stirrers are close to their velocity, and are six times IargerReynOIdS number could be defined as
than with the smooth stirrers. But the important feature is
that in the latter as in the former cas¥ is found to be Re— Qa(b-a) )
independent of the Reynolds number. This result shows that v '
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FIG. 4. Schemes of experiment Ba) the Couette-Taylor cell
with smooth surfaces ang) the section of the system perpendicu-
lar to the axis of rotation and showing the ribs which make the 0.0001 |
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In the first set of experiments all the surfaces in contact
with the fluid were smooth. In the second, parallel ribs were FIG. 5. Couette-Taylor experiments. Logarithmic plots of the
glued onto both the inner and outer surfaces. These ribs wergndimensional rates of energy dissipatj@ as a function of the
straight and parallel to the axis of the cylinders. A crossReynolds number. The black trianglék) are the results obtained
section of the cell is shown in Fig(l). Since we wanted the with smooth cylinders, and the open on@s) correspond to those
flow to remain close to a classical Couette-Taylor flow, theobtained with the ribbed ones. The cros¢gs show for compari-
ribs were chosen to be small. They were square in sectiorson the rates of energy injectigdy, deduced from the data obtained
had a height of 3 mm, and were set at approximately 36-mnwith smooth cylinders by Lathrop, Finenberg, and Swin[fgly
intervals on both surfaces.

We checked that the presence of these ribs do not changéowing the dimension of their cell it is thus possible to
the basic flow drastically. In particular we used a very vis-deduceg, from their results:
cous solution of glycerol containing iriodine, and investi-
gated the primary instability leading to the formation of

2
Couette-Taylor rolls. With or without ribs it occurred practi- lziz M (12)
cally at the same threshold, and led to a similar structure TR n(1+ 1)

with three pairs of counter-rotating rolls along the length of

the cylinder.

) i i Some of their points are shown in Fig. 5. Though our experi-

As in experiment A the Reynolds number was varied byments cover a smaller range of values of Reynolds number,
tuning the velocity, and by using water or a glycerol solutionihe Reynolds number dependence of the two experiments are
diluted with 20% water. The Reynolds number range;, good agreement. Lathrop, Finenberg, and Swirf@yn-
7x10°<Re<5x10" could thus be covered. , derlined that only a local exponent could be obtained from

The same techniques were used as in the previous case fifyir results. We observe the same trend in our results, but
measure both the injected power and the dissipated powefit 45 clearly, the temperature measurements being less pre-
They were in fair agreement with each other, but the meagise than the torque ones. Compared to those of [REfour

surements of injected power always showed more scattefegits are systematically shifted to larger values, either be-
probably because of a slow evolution of the inner friction in.5se of the difference in the geometry of the cells or be-

the motors. For this reason only the dissipative powers argg e of the calibration of the heat capacity in our experi-
shown on Fig. 5. In order to obtain values gf from the | ont.
thermal measurements, it is necessary to know the heat ca- \wnen small ribs are added. the energy which has to be

pacity of the system. In the present case, where a larger solifiacted in the flow at a given value of the Reynolds number
mass is in contact with the fluid, we had to measure this hegf’ ,,ch larger(of the order of 12 times at Rel0?). The

capacity separately. This was done by measuring the increage ,oriant results seen from Fig. 5 is that, as in experiment A,

of temperature of the system when heated by an immerseg " pocomes essentially independent of the Reynolds num-
resistor. o , . ber. Though our measurements, compared to those done in
As shown in Fig. 5, with the smooth walf$, exhibits a  gyneriment A, covered a smaller range of Reynolds numbers,
Reynolds number dependence. In their work on the Couetigney are sufficient to show that the same conclusions can be
Taylor flow, Lathrop, Finenberg, and Swinng8] measured  grawn in the two cases. This type of scaling is not only that
the global torqueG exerted by the motor and gave their gynected from Kolmogorov theory, but means that the actual
results in terms of Reynolds dependenceCofintroducing  gjissipation is a constant fraction of the upper bound pre-
B, as defined above, their adimensional torque can be writtegjcted by Doering and Constant{d2]. Larger dissipation
as rates would naturally be obtained if larger platelets were
fixed onto the cylinders, and it would be interesting to see
sz[ Ziil_Jr 712) 5, RE. (109 how close to the bound one can get by optimizing their
7) shape.
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IV. DISCUSSION proach has been the investigation of the coherent structures

Our results concern statistically stationary regimes Ob_present n turbulence. On thg other ha_md, the engineering

tained in closed cells. Thus they provide a generalization o ommunity was always more interested in the global proper-
: ies of a turbulent flow: For instance, what is the drag of a

:Srsl;ﬂtlznvt\:lglClgo?rceor\avggriksrg)%w\?veincgrﬁ)?gcgﬁvlﬁiea;lr;/dtv(\jg(i:?glsg?given body or the resistance of a tube? Here we have tried to
cal cases: .the drag of bluff :':md slender bodies and the resin-a\/is’it this problem with a v_iew (o testing the validity of the
tance of bipes{cf Schlichting[17]) %olmogorov model to predict such global properties as the

X : " total injection of energy or the total dissipation in a confined
At high Reynolds number a moving body creates a turbu—fIOW

fgdtuvgsld(i}omfh:ger;gy Ip{c?lcetfgrt;:ﬁgntthr?e t:"%%”'ﬁ?g;t%‘nn be We have shown that the distinction between the turbulent
9. gime, flow created by smooth and rough surfaces is not limited to

holds, then the drag should increaseUits This dependence open flows, but extends to the steady regimes of turbulence

Itfw pgir:ec;lynobfs sr:vedné? :hfbczsff \(/)vf ?n (E[hhslc perpe;dr:ClrJrlr?rlt?n closed cells. With smooth stirring, confirming the findings
€ direction ot the undisturbed Tiow. S case, It normat- ¢ previous works, our results show that the global dissipa-

. 2 .. .
'[21%% bypU_, the dr?g (t:oefﬁue?cd (thuttraé/ [18]d Sch;llzr Ition is weak and dominated by the dissipation occurring in
remains constant over amost Tour decades ol €. i hoyngaries. In contrast, when the moving surfaces have

contrast, the experiments on flat plates, moving parallel t : . ;
. " Lo platelets perpendicular to the motion, much more energy is
their main surfaces, shows that the normalized drag coeff% Perp 9y

. VA . " injected into the fluid. In this case the role of the boundary
cient decreases with increasing velo_<:|t|e_s. Event_ually th ayers is weaker, most of the dissipation occurs in the bulk of
drag becomes constant at a value which is a function of th?he fluid, and the global dissipation follows the Kolmogorov
rou_lgr?neds_;sf of the s_ur;‘)aches.. fth . . fscaling. A simple interpretation is that the energy is directly
bo dielss alt ﬁirgegclgelgnoﬁ dsavr;cL)erobetrse rrlzsslslggctg t;) r(;]igtilggti% supplied to thg trailing vortice; behind the platelets. The vor-
between bluff bodies and streamlinéor slendey bodies Bices thu.s_typ.|cally have the size of th.e platelets, so the}t the
They differ by the way in which energy is injected into ihe energy injection occurs at a well-defined scale and with a

) : . . N well-defined velocity in the inertial range. For this reason we
fIw?. When a do||sk Iof d|ar;]1etelt moveI:s in a fluid Wlt? its an call this an inertial stirring
surface perpendicular to the motion, large vortices of typica i ; Py
sizeL are created in the near wake just behind the disk, anE A general result of the present study is also the possibility

. Lo X f estimating directly the rate of energy transferred to the
then detach from it. The injection sca]e 1S th_us large and wel ulk of the flow by measuring the pressure fluctuations only.
defined. In contrast, for a plate moving in its plaf@ zero

incid th it i ¢ bound | 4 th We found for these steady flows in closed cells that the ef-
Incl en<_:e),_ nere IS formation of boundary layers an eficiency of the stirrers in setting the bulk of the fluid into
energy is injected into the fluid via these boundary layers, Sfhotion is a function of their roughness but is surprisingly

I Its not't(?aS)t/ to defm? ‘22 ”."Jecg"’” scglet. Ilf the plallte IS roughindependent of the Reynolds number. This is true even with
a transition to a constafl is observed at large velocitgee smooth stirrers, so that in all cases the dissipation in the bulk,

[17_]r)r'] d classical situation is the flow in bi ‘ as estimated using the pressure fluctuations, appears to sat-
e second classical situation is the flow in pipes forisq  simogorov scaling.

which a coefficient of resistance is defined[20,21. This With smooth stirrers the dissipation in the boundaries is

cogfﬂqent of resstanpk shoplq be constant if “?'a“d’i) IS ominant and gives a drag coefficient which decreases with
satisfied. In smooth pipes it is in fact a decreasing function o

the R Id ber. | h oi thi Hicient b eynolds number. As we found a constant drag coefficient in
€ REynolds numoer. In rough pipes this Coetncient By, qa 1k this suggests that beyond a certain Reynolds num-
comes constant for Reynolds numbers larger than a chara

istic threshold. The | h h h I hB'er the boundary drag coefficient will no longer be domi-
teristic threshold. The larger the roughness, the smaller t fiant, so that the global drag coefficient will become constant.

threshold at Wh'Ch.th'S Crossover occurs. . This turbulence in the boundaries was shown to exhibit the

Several theoretical models account for the. behavior 0kolmogorov scaling at the level of the second-order statistics
both the c_irag of the smooth plate and the resistance of t 2], but it is conceivable that the existence of different re-
smooth pipes. They are based on models of the bounda ions in the flow could have an effect on some of the other

Iayers.IThe rfn%dellqdue |t§ BlaSigSf' lRef. 5.17]) ]Icea(_js 0 gatistical properties of the turbulent flow. It should be par-
phOW?r ar\:vs obt N _(ﬁydno S num eg.gtlgr;é}ft?hor 'nsdtalnceticularly interesting to see whether or not the intermittency of
that for the tubea. will decrease as 0. - 1€ Model e yelocity signals is dependent on the type of energy injec-

by Prgndtl(cf. Ref. [1.7]) which provides a better ﬁ.t of the }ion. A forthcoming article(Cadot, Bonn, and Douady3])
expenmer)tal data gives a unlve_rsall law of resistance Of he gevoted to a discussion of the drag reducing proper-
smooth pipes which has a logarithmic dependence on th

) es of diluted polymers, as observed in turbulence generated
Reynolds number and thus no power law. It was used in Re poly 9

. . . . the two types of stirrings, respectively.
[8], where it provides the framework of the interpretation of y yp 9 P y
the data.
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